20VL014 - CMOS RF INTEGRATED CIRCUITS

Course Objectives:

The objective of this course is to introduce the theory and concept of radio frequency integrated system.

Course Outcomes: At the end of the course the student will be able to:

- **CO1** Analyze the performance parameters of radio frequency circuits and identify design trade-off of radio frequency communication systems.
- CO2 Identify noise sources and develop noise models for the devices and systems.
- CO3 Identify various techniques to improve the bandwidth of RF amplifiers.
- CO4 Perform matching with complex loads
- CO5 Design of CMOS Low-Noise Amplifier & Mixer
- CO6 Design of LC Oscillator & Power amplifier.

UNIT-1

INTRODUCTION: RF systems- Basic Architectures, Transmission Media and Reflections, Maximum Power Transfer, Passive impedance transformation, Noise Models for Active and Passive Components, Classical Two-Port Noise Theory, Noise Figure, Friis Equation, Nonlinearity- 1 dB compression point, IIP3 at receiver front end, Sensitivity and Dynamic range.

UNIT-2

HIGH FREQUENCY AMPLIFIER DESIGN: High Frequency Amplifier Design – Bandwidth Estimation Using Open-Circuit Time Constants, Bandwidth Estimation Using Short-Circuit Time Constants, Risetime, Delay and Bandwidth, Zeros to Enhance Bandwidth, Shunt-Series Amplifier, Cascode Amplifier.

UNIT-3

LOW NOISE AMPLIFIER: Introduction, General Philosophy, Comparisons of Narrowband and wideband LNA.

Wideband LNA Design: DC Bias, Gain and Frequency Response, Noise Figure.

Narrowband LNA: Principles, Core amplifier design, Impedance matching, noise figure, power dissipation, trade-offs between noise figure and power dissipation, noise contribution from other sources.

UNIT-4

MIXERS: Active Mixer, modeling mixers, single balanced mixer circuit, double balanced mixer circuits, Quantitative description of Gilbert mixer, conversion gain, Distortion, analysis of Gilbert mixer.

Passive mixers: Switchig mixer, distortion in in unbalanced switching mixer, conversion gain and noise.

UNIT – 5

OSCILLATORS: VCO, LC oscillators, Ring oscillator;

RF POWER AMPLIFIERS: Class A, AB, B, C amplifiers, Class D, E, F Amplifiers, RF Power Amplifier Design Examples.

TEXT BOOKS

1. Thomas H. Lee ,"The Design of CMOS Radio-Frequency Integrated Circuits". Cambridge University Press, 2004.

2. Behzad Razavi, "RF Microelectronics". Prentice Hall, 1998.

3. Bosco Leung, "VLSI for wireless communication", second edition, PrenticeHall, 2002.

REFERENCEBOOKS

1. A.A. Abidi, P.R. Gray, and R.G. Meyer," Integrated Circuits for Wireless communications", New York: IEEE Press, 1999.

2. Jeremy Everard, "Fundamentals of RF Circuit Design With Low Noise Oscillators", John Wiley & Sons Ltd.2001